Enter your email address:

Delivered by FeedBurner


E-mail Steve
This form does not yet contain any fields.
    Listen to internet radio with Steve Boese on Blog Talk Radio

    free counters

    Twitter Feed

    Entries in Technology (399)


    It doesn't matter if the robots aren't coming for your job, they are coming for your neighbor's job

    After reading a flurry of pieces over the last few days about the progress being made in self-driving vehicle technology, I was reminded that one job category that seems likely to be highly pressured by this type of automation is commercial vehicle driving. You don't have to be a genius to realize that once Tesla (and others), get enough of their new commercial trucks into service, that Generation 2.0 of these trucks will attempt to not just eliminate diesel fuel and noxious emissions from their products - they will try to eliminate the driver too.

    And you probably caught something about Amazon's newest experiments with retail stores that have no cashiers. Or maybe you have heard about fast food giants like McDonald's or Panera pushing more self-service kiosks into their locations, to reduce the need for human cashiers and order-takers. Or the hotels that are using mobile robots to deliver room service meals to their guests. And the list goes on and on.

    And maybe after reading all these stories you say to yourself: "Self, these technology advancements are amazing. But good thing I am a (insert the white collar 'knowledge' job you have here) and not a truck driver or a cashier.' 

    And whether or not the robots are coming sooner or later for whatever 'knowledge' job you have today is probably debatable, let's pretend for the moment in the words of Big Brother, (yes, I am fan), - 'Knowledge worker X, you are safe'. Phew. That is a relief.

    But here is the thing, the kinds of jobs that are most vulnerable, most likely to be adversely impacted by automation are ones that are held by millions of people. Have a look at the chart below, from BLS data from May 2016.


    Look closely at that list of the Top 10 'most-held' job categories in the US and think about which of them, (Clue: It is almost all of them), are going to be increasingly pressured by technology, automation, and 'self-service'.

    There are about 150M people in the US labor force give or take. The Top 10 job categories in the above chart represent about 21 or 22 million workers - roughly 15% of all US workers. That is a huge number, especially considering that half a percent or a full percent moves in the unemployment rates are such big news.

    The potential and the consequences of labor automation are concerns for everyone - whether or not your job is 'safe'.

    And one last bit of food for thought. This issue, this challenge of automation and technology threatening jobs is also going to be a local one. Check out this chart below that shows the largest private employer for each state in the US. See any cause for concern?

    When Walmart decides to move more aggressively into online, self-service, robot customer service pods, and Amazon-like efficiency in their distribution centers there will be an impact too.

    But that's ok. You don't work at Walmart.

    But I bet you know someone who does.


    Job Titles of the Future: Man-Machine Teaming Manager

    It's been ages since I have had a new entry in the extremely popular 'Job Titles of the Future' series, but over the weekend I came across an interesting report from tech consultancy Cognizant titled '21 Jobs of the Future: A Guide to Getting - and Staying - Employed Over the Next 10 Years'that more or less has the next 21 posts in this series all in one report. With so much interesting source material (thanks Cognizant!), I had to bust out a new post for the series.

    Then entire report is really interesting, and I imagine I am going to re-visit it again for future installments, but I thought today I would call out one really interesting future job from the list of 21 - a job that I can see playing a large role in the future of work and too, the future of HR.

    The job title of interest is 'Man-Machine Teaming Manager' and I will share some details from the 'job description' for this theoretical role as laid out by our pals at Cognizant.

    The key task for this role is developing an interaction system through which humans and machines mutually communicate their capabilities, goals and intentions, and devising a task planning system for human-machine collaboration. The end goal is to create augmented hybrid teams that generate better business outcomes through human-machine collaboration.

    As a man-machine teaming manager, you will identify tasks, processes, systems and experiences that can be upgraded by newly available technologies and imagine new approaches, skills, interactions and constructs. You will define roles and responsibilities and set the rules for how machines and workers should coordinate to accomplish a task. This involves designing flexible experiences that meet workers’ expectations, while providing a simple and intuitive interaction with machines (translating consumer behavior to business users, as well as to machines, for instance). Ideal candidates will be passionate about advancing human-robot cooperation strategies in a dynamic business environment.

    Lots of the more enlightened 'robots are taking away the jobs' commentary and predictions have arrived at a similar conclusion, that the future of work will be much more about people and robots/machines/algorithms working together, with each contributing their unique and hard to copy strengths. If you did in to the job responsibilities for the Man-Machine Teaming Manager role, (and kudos to Cognizant for writing this report in the form of a bunch of new-age job adverts), the first one talks about the manager needing to identify and describe the business functions and capabilities that are uniquely possessed by people and the ones that would be better performed by machines.

    It seems to me, if you took this conceptual job, and instead of 'people' and 'machines' being the groups that the manager had to better combine as teams and collaborators, and just described it in today's terms of cross-functional teams of people, then in many ways you would be describing the role of an HR leader or Chief Talent Officer.

    Figuring out strengths, capabilities, gaps, and the best ways for diverse groups of talent to combine and connect and collaborate in order to achieve desired business outcomes seems to be one of the most important roles in any organization, and one that should be owned and championed by HR and Talent leaders. So if the Cognizant report is right, and I have no reason to nay say it, then in the near future more of the talent and the collaborators will be some form of technology or robots or algorithms.

    That doesn't change the essential need, purpose, and importance of the role - organizations need leaders that can assess, understand, support, and put in place systems and processes that enable all the talent in the organization to work together to produce the best possible outcomes.

    Hopefully, that role will be filled by people for some time to come.

    Hopefully, they will be HR people.

    Have a great week!


    Self-driving bus crashes, proving all buses should be self-driving

    In case you missed it, a fairly significant pilot of self-driving vehicles, in this case shuttle buses, launched last week in Las Vegas. In this test, shuttle buses developed by French company Navya ARMA will carry passengers along a half-mile route in downtown Las Vegas, (that part of Vegas that most of us who go to Vegas for Conference and conventions tend to ignore). The Navya ARMA buses rely on GPS, cameras, and light-detecting sensors in order to navigate the public streets. According to reports, the year long test hopes to shuttle about 250,000 passengers up and down the Vegas streets.

    Pretty cool, right?

    Guess what happened in the first couple of hours after launching the self-driving pilot program?

    Yep, a CRASH.

    The first self-driving bus was in a minor accident within a couple of hours of the service's launch when a (human driven) delivery truck failed to stop in time and collided with the stationary shuttle bus.

    According to a spokeperson from the American Automobile Association, "The truck making the delivery backed into the shuttle which was stopped. Human error causes most traffic collisions, and this was no different."

    No one was hurt, the damage was minor, and the self-driving pilot program continues in Las Vegas.

    Why bring this up, especially on a blog that at least pretends to be about work, HR, HR Tech, etc.?

    Because these kinds of technology developments, of self-driving vehicles, robots that can sort and organize inventory in warehouses, robots that will greet and provide basic customer services in retail environments and hotels, are being developed, improved, and deployed at increasing rates and in more and more contexts.

    Self-driving technology in particular, especially for commercial vehicles, is by some estimates within 10 years of becoming a mainstream technology, potentially displacing hundreds of thousands of commercial truck drivers. And as an aside, this piece describes how the trucking industry is clearly not ready for this and other technological disruptions.

    This is not meant to be another, tired, 'Robots are taking our jobs' post, but rather another reminder that technology-driven disruption will continue to change the nature of work, workplaces, and even our own ideas about the role of people in work and the economy. And HR and HR tech leaders have to take a leading role in how, where, when, and why their organizations navigate these changes, as they sit directly at the intersection of people, technology, and work.

    And lastly, if that Las Vegas delivery truck had been equipped with the same kinds of self-driving tech that the Nayva ARMA bus has, there is almost no chance there would have been an accident.

    But it might have be fun if it happened anyway. I'd love to see two 'robot' trucks argue with each other on the side of the road about which one was the doofus who caused the accident.

    Have a great day!


    Looking for bias in black-box AI models

    What do you do when you can't sleep?

    Sometimes I watch replays of NBA games, (how about my Knicks?), and sometimes I read papers and articles that I had been meaning to get to, but for one reason or another hadn't made the time.

    That is how I spent an hour or so with 'Detecting Bias in Black-Box Models Using Transparent Model Distillation', a recently published paper by researchers at Cornell, Microsoft, and Airbnb. I know, not exactly 'light' reading.

    Full disclosure, I don't profess to have understood all the details and complexity of the study and research methods, but the basic premise of the research, and the problem that the researchers are looking to find a way to solve is one I do understand, and one that you should too as you think about incorporating AI technologies into workplace processes and decision support/making.

    Namely, that AI technology can only be as good and as accurate as the data it’s trained on, and in many cases we end up incorporating our human biases into algorithms that have the potential to make a huge impact on people’s lives - like decisions about whom to hire and promote and reward.

    In the paper, the researchers created models that mimic the ones used by some companies that created 'risk scores', the kinds of data that are used by a bank to decide whether or not to give someone a loan, or for a judicial administration to decide whether or not to give someone early parole. This first set of models is similar to the ones that these companies use themselves.

    Then the researchers create a second, transparent, model that is trained on the actual outcomes that the first set of models are designed to predict - whether or not the loans were paid back and whether or not the parolee committed another crime. Importantly, these models did include data points that most of us, especially in HR, are trained to ignore - things like gender, race, and age. The researchers do this intentionally, and rather than me try to explain why that is important, read through this section of the paper where they discuss the need to assess these kinds of 'off-limits' data elements, (emphasis mine):

    Sometimes we are interested in detecting bias on variables that have intentionally been excluded from the black-box model. For example, a model trained for recidivism prediction or credit scoring is probably not allowed to use race as an input to prevent the model from learning to be racially biased. Unfortunately, excluding a variable like race from the inputs does not prevent the model from learning to be biased. Racial bias in a data set is likely to be in the outcomes — the targets used for learning; removing the race input race variable does not remove the bias from the targets. If race was uncorrelated with all other variables (and combinations of variables) provided to the model as inputs, then removing the race variable would prevent the model from learning to be biased because it would not have any input variables on which to model the bias. Unfortunately, in any large, real-world data set, there is massive correlation among the high-dimensional input variables, and a model trained to predict recidivism or credit risk will learn be biased from the correlation between other input variables that must remain in the model (e.g., income, education, employment) and the excluded race variable because these other correlated variables enable the model to more accurately predict the (biased) outcome, recidivism or credit risk. Unfortunately, removing a variable like race or gender does not prevent a model from learning to be biased. Instead, removing protected variables like race or gender make it harder to detect how the model is biased because the bias is now spread in a complex way among all of the correlated variables, and also makes correcting the bias more difficult because the bias is now spread in a complex way through the model instead of being localized to the protected race or gender variables. ŒThe main benefi€t of removing a protected variable like race or gender from the input of a machine learning model is that it allows the group deploying the model to claim (incorrectly) that they model is not biased because it did not use the protected variable.

    This is really interesting, if counter-intuitive to how most of us, (me for sure), would think about how to ensure that AI and algorithms that we want to deploy to evaluate data sets for a process meant to provide decision support for the 'Who should we interview for our software engineer opening? question.

    I'm sure we've seen or heard about AI for HR solutions that profess to eliminate biases like the ones that have existed around gender, race, and even age from important HR processes by 'hiding' or removing the indicators of such protected and/or under-represented groups.

    This study suggests that removing those indicators from the process and the design of the AI is exactly the wrong approach - and that large data sets and the AI itself can and will 'learn' to be biases anyway.

    Really powerful and interesting stuff for sure.

    As I said, I don't profess to get all the details of this research but I do know this. If I were evaluating an AI for HR tool for something like hiring decision support, I probably would ask these questions of a potential provider:

    1. Do you include indicators of a candidate's race, gender, age, etc. in the AI/algorithms that you apply in order to produce your recommendations?

    If their answer is 'No we don't include those indicators.'

    2. Then, are you sure that your AI/algorithms aren't learning how to figure them out anyway, i.e., are still potentially biased against under-represented or protected groups?

    Important questions to ask, I think.

    Back to the study, (in case you don't slog all the way through it). The researchers did conclude that for both large AI tools they examined, (loan approvals and parole approvals), the existing models did still exhibit biases that they professed to have 'engineered' away. And chances are had the researchers trained their sights on one of the HR processes that AI is being deployed in, they would have found the same thing.

    Have a great day!


    HRE Column: Wrapping up HR Tech, and Looking Forward to 2018

    Once again, I offer my semi-frequent reminder and pointer for blog readers that I also write a monthly column at Human Resource Executive Online called Inside HR Tech that can be found here.

    This month, I take a look back at the recently concluded HR Technology Conference and review some of the key issues, themes, and the implications for the future of HR Tech that I took away from the world's largest gathering of the HR technology community. In the piece,  take a look at some of the more interesting trends and themes in HR tech that we have been hearing about for some time now, and some newer ideas that have emerged in the last year or so. These issues, challenges, and opportunities will demand continuing focus for HR and business leaders in 2018 and beyond, and I imagine will be a big part of my planning for HR Tech in 2018 as well.

    I was really pleased with the energy, insight, and most of all the amazing group of HR leaders who attended HR Tech a few weeks ago, as well as our first-class lineup of speakers and exhibitors. I can't thank you all enough for making this last HR Tech the best event in our history.

    Moving forward, I am incredibly excited to get started working on HR Tech in 2018, and I will be sharing much of the concepts, ideas, and themes during the year on this blog, in the HRE Inside HR Tech column, as well as the HR Happy Hour Show.

    Having said that, here's a taste of the HRE piece:

    The HR Tech Conference held earlier this month serves almost as an annual report card, health check and starting point where HR technology will head in the next year, from the latest developments in mobile, analytics and cloud technology to a look at some of the technologies that are coming next, including artificial intelligence, augmented reality and even blockchain.

    Reflecting on everything that went on at the conference, here are some thoughts about what HR and HRIT leaders should really have top of mind as 2017 winds down and organizations begin planning for 2018.

    Cloud, Mobile, Analytics: Not "If?" but "When?"

    If you look back over the past few years of HR-technology-trends articles, you'd find that the migration of HR systems to the cloud, adoption and greater rollout of mobile HR solutions, and an increased focus on HR analytics were mentioned in just about every piece. As the 2017 HR Tech Conference clearly demonstrated, all these trends/predictions starting in 2010 or so have been (or are in the process of being) realized in most organizations and by most HR technology providers.

    The potential for increased HR innovations that arise from having a solid foundation of core HR systems is being realized by organizations of all sizes. And that is an important point as well. A quick check of the many cloud-based HR technologies that are specifically targeting and serving small- and mid-market businesses reveals that most innovative HR technologies are available to almost at any scale. And these so-called mid-market solutions have mostly been built from the ground up -- with cloud, mobile and analytics at their core.

    Wellness, Experience, Productivity

    During Josh Bersin's closing keynote at HR Tech, he talked about a couple of key trends that are combining to shape and direct more organizational attention and resources to employee and organizational wellness. The first is the idea of the overwhelmed employee: one who is barraged by a combination of incessant interruptions from email and smartphone notifications and apps, highly complex business systems and processes, and a general increase in working hours which all compound the challenge of achieving work/life balance. One of the strategies that HR leaders and organizations are increasingly adopting (and applying associated technology solutions to support these strategies) is more thoughtful and measurable programs to address and improve employee well-being...

    Read the rest at HR Executive Online...

    If you liked the piece you can sign up over at HRE to get the Inside HR Tech Column emailed to you each month. There is no cost to subscribe, in fact, I may even come over and re-surface your driveway, take your dog for a walk, rake up your leaves, and eat your leftover Halloween candy.

    Have a great day and Happy First Day of November!

    Page 1 ... 3 4 5 6 7 ... 80 Next 5 Entries »